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Goals and
approach
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LITHIUM ION BEAM BUNCH

Final Beam Energy: 3-5 MeV
Final Spot Size : ~ 1 mm diameter
Total Charge Delivered: 30 nC    (~ 2x1011 particles or Imax ~ 30 A)

Exiting beam available
for dE/dx measurement

NDCX-II beam must be accelerated
to ~3 MeV and compressed down to
~1 ns (~1 cm)
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NDCX-II represents a significant upgrade over NDCX-I
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• For initial WDM experiments: baseline is a 1-ns Li+ pulse.

• For experiments relevant to ion direct drive: require a longer pulse with a “ramped”
kinetic energy, or a double pulse.
Glen Westenskow explored one approach to the latter.

• Possibility: Na+3 at 15 MeV has a shorter range than Li+ at 5 MeV, due to the Z2

scaling of ion deposition (per TRIM code).
It would require stripping on a dense plasma jet, introducing scattering;
but Na may offer a higher source current density than Li.
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Induction cells for NDCX-II are available from LLNL’s
decommissioned ATA facility

Cells will be refurbished with
stronger, pulsed solenoids

solenoid

water
cooling

Test stand
has begun
to verify
performance



The HIFS-VNL has sufficient ATA parts to build NDCX-II,
enabling beam-target experiments at the Bragg peak & studies

of ion direct-drive for IFE
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This simple circuit can generate a wide variety of shapes; other
equally simple circuits offer additional waveforms

Waveforms generated for various component values (Blumlein source):

charged line

induction cell & accelerating
gap impedance

(C3 can be increased,
R3 or L2 decreased,
by inserting additional
components across
the cell)ATA “compen-

sation box”
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NDCX-II uses an accel-decel injector in which the “einzel lens”
effect provides transverse confinement

ground

+102 kV pulsed source                 +68 kV DC        -170 kV DC      solenoid
10 mA/cm2                       extraction electrode     accel electrode
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NDCX-II must make effective use of assets (accelerating cells
and Blumleins) from decommissioned ATA accelerator

Issues:
• ATA cells come with constraints:

– 1.4 x 10-3 Volt-seconds in each ferromagnetic core
– ATA Blumleins offer 200-250 kV, but only if pulse is < 70 ns
– At front end where longer pulses are needed, use custom voltage sources;

limit to ~ 100 kV for cost
• A gap must be “on” while any of the beam overlaps its extended fringe field.

To shorten that field, the 6.7-cm radius of the ATA beam pipe is reduced to 4.0 cm
• Some pulses must be “shaped” to combat space charge forces
• So, need at least ~30 cells (20 w/ Blumleins + 10 w/ lower-voltage sources)

Nice developments:
• At least 40 ATA cells are available
• The 200-kV pulses can be shaped via inexpensive passive circuits
• At higher energies, concept uses modular 5-cell “blocks”
• Induction accelerator can impart all or most of final ~8% velocity “tilt”
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We are well on our way toward a physics design for NDCX-II

• Accel-decel injector produces ~ 100 keV Li+ beam with ~ 67 mA flat-top
• Induction accelerates it to 3.5 MeV at 2 A
• The design is necessarily aggressive; 500 ns beam must be compressed to ~ 1 ns

From 1-D code:

λ
(µC/m)

Ek
(MeV)

entering linac

z (m)
• After neutralized drift compression, about 75% of the 30 nC beam charge

passes through the focal plane in a 1-ns window, with a minimal pre-pulse.
• The current of the compressed beam (averaged over 1 ns) is 23 A,

with a peak (averaged over 0.1-ns) of 32 A and an FWHM of 1 ns.
• However, we’re just beginning to develop the transverse dynamics & final focusing

at focus
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Physics design effort relies on PIC codes

• 1-D PIC code that follows (z,vz)
– Poisson equation with transverse falloff (“HINJ model”) for space charge

 g0 = 2 log (rpipe / rbeam0)                k⊥2 = 4 / (g0 rbeam0
2)

– A few hundred particles
– Models gaps as extended fringing field (Ed Lee’s expression)
– Flat-top initial beam with parabolic ends, with parameters from a Warp run
– “Realistic” waveforms: flat-top,“triangles” from circuit equation,

and low-voltage shaped “ears” at front end
– Interactive (Python language)

• Warp
– 3-D and axisymmetric (r,z) models; (r,z) used so far
– Electrostatic space charge and accelerating gap fields
– Time-dependent space-charge-limited emission

• LSP
– 3-D and axisymmetric (r,z) models; latter used to date
– Fully EM or Ohm’s Law fields
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Principle 1: Shorten Beam First (“non-neutral drift compression”)

• Compress longitudinally before main acceleration

• Want < 70 ns transit time through gap (with fringe field) as soon as possible
==> can then use 200-kV pulses from ATA blumleins

• Compress carefully to minimize effects of space charge
– Avoid space-charge forces on main flat-top of pulse at early times
– Constant line charge ==> ear fields required only at beam ends

• Want linear velocity tilt vz(z) = αz + β
– Ideally, uniform spacing of “beads on the string” to avoid deformation of flat-top
– At least two gaps are required to apply such a tilt

For zero-length gaps, two gaps can do it exactly
For fringing gaps, no exact solution is possible; a least-squares optimization is
used, penalizing both nonlinearlity and nonuniformity
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Principle 2: Let It Bounce

• Rapid inward motion in beam frame is required to get below 70 ns
• Space charge ultimately inhibits this compression
• Beam is (ideally) nearly parabolic by this time

• However, this short a beam is not sustainable
– Ears to confine it, much less apply a tilt, can’t readily be made,

especially with fringing gap fields
– So, the beam “bounces” and starts to lengthen

• Fortunately, a longer beam still takes < 70 ns because it is now moving faster

• Allow it to lengthen while applying:
– additional acceleration via flat pulses
– confinement via ramped (“triangular”) pulses

• Then use final gaps to apply the “exit tilt” needed for Neutralized Drift Compression
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Design as developed
using 1-D code
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Voltage waveforms for all gaps
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Pulse length (m) vs. z of center-of-mass

— based on nominal head
and tail

+ based on 4xRMS measure

Pulse 
length
(m)



The Heavy Ion Fusion Science Virtual National Laboratory18

Pulse duration vs. z

— time for the entire beam to cross a
plane at fixed z

+ time for a single particle at mean
energy to cross the finite-length gap

+ time for the entire beam to cross
the finite-length gap

70 ns



The Heavy Ion Fusion Science Virtual National Laboratory19

A series of snapshots shows how the (Ek,z) phase space and
the line charge density evolve
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These snapshots show how the (vz,z) phase space and the line
charge density evolve (note the auto-scaling)
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13.78              13.80 t = 3118 ns
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Figure-of-merit for longitudinal focus is motivated by
target requirements for WDM studies

Inputs to focus calc:
Bin duration 0.1 ns
Window duration 1.0 ns
Separation of trial planes 0.10 m
Results of focus calc: 
RMS-estimated focal plane 14.2 m
’Best' focal plane 13.8 m
Average current in 1-ns window 22.7 A
Charge in window 22.7 nC
Percent of total charge in window 75.7 %
Average power in 1-ns window 79.8 MW
Energy in 1-ns window 79.8 mJ
Peak current at focal plane 32.4 A
Peak power at focal plane 113. 8 MW
FWHM at focal plane 0.99 ns

Current (A) in optimal 1.0-ns window

z (m) of plane

Focal plane is defined as: plane through which the greatest average beam current
passes in a 1.0 ns window
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Longitudinal focus has a shallow optimum for this beam

“best”
plane

best + 
10 cm

best + 
20 cm

best - 
20 cm best - 

10 cmcurrent (A)
averaged 
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Studies using Warp
and LSP codes

(see Bill Sharp poster)



The Heavy Ion Fusion Science Virtual National Laboratory24

Warp is used to simulate the accel-decel injection process

• Nominal run uses a source diameter of 2.9 cm and yields a flat-top current
of 67 mA, giving 10.1 mA/cm2.

• Could use a 1.4" (3.56 cm) source for 100 mA; would need to confirm that
transverse confinement is adequate for “fatter” beam in “thinner” pipe.

• The flat-top energy at the first gap is 102 kV.
• The current rise time is ~ 40 ns; the emitter voltage rise time is ~ 110 ns.
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Warp simulations show reasonably smooth transverse dynamics

The normalized transverse emittance in this run
grew in the accelerator from 0.9 to 1.2 mm-mr



1-D code (top) & Warp (bottom) results agree, with differences
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Ohm’s law
3x1013 plasma
3x1012 plasma

Current
and radius
z = 197
cm

Sub ns
pulse

Simulations of NDCX-II neutralized compression and focus
suggest that a plasma of density ~ 1014 cm-3 is desirable
• Idealized beam, uniform plasma, so far:

– Li+, 2.8 MeV, 1.67 eV temperature
– 2-cm -5 or -6.7 mrad convergence
– uniform current density; ε = 24 mm-mrad
– 0.7-A with parabolic 50-ns profile
– applying ideal tilt for 30 ns of beam

•½ mm 1-ns beam has 2x1013 cm-3 density

Tilt gap

plasma

5-kV
e-trap

 (LSP runs by D. Welch; others by A. Sefkow, M. Dorf; Warp code starting to be used)
Radius
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We simulate injection from Cathodic-Arc Plasma sources

1.2 ns                                                         4.5 ns

• This run corresponds to an NDCX-I configuration with 4 sources
• It was made by Dave Grote using Warp in 3-D mode
• LSP has been used extensively for such studies
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Brief comment
on PLIA

(see Chi Yeung Ling poster)
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Pulse-Line Ion Accelerator (PLIA) may serve as a
compact “afterburner” or an alternative front end

Experiment WARP Calculation

Voltage gradient was limited to < 0.2 MV/m by partial discharges in the vacuum

20” = 51 cm
Scaled helix for high gradient testing

– so far, peak gradient 0.35 MV/m
– partial discharges traced to high frequency

ringing from spark gap pulser, now reduced;
further reduction is being pursued

Proof-of-principle test on NDCX-I: acceleration & longitudinal bunching

A traveling wave on a helical pulse line accelerates the ion bunch
–“surfing” mode: acceleration of short bunch; 
–“snowplow” mode: aceleration and bunching of long pulse
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What remains
to be done
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Progress has been encouraging; much remains to be done
• Proper accounting for initial beam-end energy variation due to space charge

(the 1-D run shown was initiated with a fully-formed uniform-energy beam)
– Other 1-D runs used a “model” initial energy variation and an entry “ear” cell;

they produced compressed beams similar to the one shown
– However, that variation was not realistic; a Warp run using the 1-D-derived

waveforms yielded inferior compression
• Better understanding of beam-end wrap-around (causes and consequences)
• A prescription for setting solenoid strengths to yield a well-matched beam
• Optimized final focusing, accounting for dependence of the focal spot upon velocity

tilt, focusing angle, and chromatic aberration
• Assessment of time-dependent focusing to correct for chromatic effects
• Development of plasma injection & control for neutralized compression & focusing

(schemes other than the existing FCAPS may prove superior)
• Establishment of tolerances for waveforms and alignment

Major goals remain:
– a self-consistent source-through-target design, including

assessment of tolerances etc., for WDM studies
– a prescription for modifications offering multiple pulses, ramped

energy, and/or greater total energy, for ion direct drive studies
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DOE priorities include an ion-driven Warm Dense Matter facility
From An Interim Report on Facilities for the Future of Science (August 2007):

From DOE’s mission need document: “NDCX-II … is necessary R&D to assess the
performance requirements of injection, acceleration and focusing of short pulses needed for
the IB-HEDPX. Out of the $6M R&D cost (for IB-HEDPX), $5M is for hardware upgrade of
NDCX-I to NDCX-II, which serves as a prototypical test-bed for the critical physics and
engineering for developing the design and construction methodology of IB-HEDPX”


